Процесс фотосинтеза. Что происходит в световую фазу фотосинтеза

Процесс фотосинтеза состоит из двух последовательных фаз: световой и темновой.

Световая фаза. Расположенные в хлоропластах молекулы хлорофилла поглощают лучи определенного участка спектра (красные и фиолетовые). Поглотив квант света, молекула хлорофилла возбуждается. Квант света срывает электрон с ее орбиты, в результате чего молекула хлорофилла окисляется, а электрон присоединяется к молекуле переносчика электронов .

В процессе последующих окислительно-восстановительных реакций электрон транспортируется другими переносчиками с более низкими окислительно-восстановительными потенциалами. Освобожденная при этом энергия используется прежде всего на образование АТФ из АДФ. Фотосинтетическое фосфорилирование присоединение неорганического фосфата к АДФ с использованием энергии света . Различают циклическое и нециклическое фосфорилирование. При циклическом фосфорилировании восстановление молеул хлорофилла проходит за счет возвращения его собственных электронов, предварительно сорванных с орбиты квантом света. В этом случае образуется только АТФ за счет энергии электронов активированного светом хлорофилла.

В результате нециклического фосфорилирования хлорофилл восстанавливается за счет электронов гидроксильных ионов воды, которая предварительно подвергается фотолизу фотохимическому расщеплению на ион водорода и гидроксил. На этом пути энергия электрона используется для «зарядки» АТФ, а протоны воды, соединяясь с НАДФ, образуют его восстановленную формулу – НАДФ. Н (с участием электронов, оторванных от молекулы хлорофилла). Кроме такого восстановления образуется и кислород из групп ОН. (рис).

Кроме АТФ энергия аккумулируется и в системе НАДФ – НАДФ. Н. Химическая энергия, аккумулированная в АТФ и НАДФ. Н используется в дальнейшем для синтеза органических соединений.

Процесс движения электронов при фосфорилировании не сопровождается мгновенной отдачей энергии. Это объясняется тем, что электроны с высших энергетических орбит могут переноситься от молекулы к молекуле системой переносчиков электронов, которыми являются пластохиноны, цитохромы, ферредоксин и другие соединения. Такая миграция электронов замедляет отдачу ими энергии, что биологически более целесообразно, чем одномоментная отдача энергии, которую соответствующие системы не успели бы «переработать».

Световая фаза проходит в мембране гран (рис.2).Под действием кванта света хлорофилл теряет электрон и переходит в возбужденное состояние:

Хл свет Хл * + е - .

Эти электроны передаются переносчиками на наружную (обращенную к матриксу) поверхность мембраны тилакоидов, где накапливаются. Одновременно внутри полостей тилакоидов происходит фотолиз:



Н 2 О свет Н + + ОН - .

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы ОН:

ОН - – е - = ОН.

Образующиеся электроны передаются переносчиками к молекулам хлорофилла и восстанавливают их, а радикалы ОН объединяются, образуя перекись водорода, которая на свету быстро разлагается на воду и свободный кислород:

4ОН = 2Н 2 О 2 ; 2Н 2 О 2 = 2Н 2 О + О 2 .

Протоны водорода, образовавшиеся при фотолизе воды, не могут проникнуть через мембрану граны и накапливаются внутри нее, создавая и пополняя протонный резервуар . В результате внутренняя поверхность мембраны граны заряжается положительно (за счет Н +), а наружная – отрицательно (за счет е -). По мере накопления по обе стороны мембраны противоположно заряженных частиц нарастает разность потенциалов. При достижении ее критической величины сила электростатического поля начинает проталкивать протоны через канал АТФ-синтетазы, расположенный в АТФсоме. На выходе из протонного канала создается высокий уровень энергии, которая используется для фосфорилирования имеющихся в матриксе молекул АДФ:

АДФ + Ф = АТФ.

Ионы водорода, оказавшись на наружной поверхности мембраны тилакоида, встречаются там с электронами, образуя атомарный водород, который идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфата ):

2Н + + 4е - + НАДФ + = НАДФ. Н 2 .

Таким образом цикл световых реакций фотосинтеза представляет собой индуцированное светом перенесение электронов в реакциях циклического и нециклического фосфорилирования, во время которых происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ. Н 2 . Кислород диффундирует в атмосферу, а 3 АТФ и 2 НАДФ. Н 2 транспортируются в матрикс пластид и участвуют в процессах темновой фазы.



Поглощенная световая энергия может переводить электроны молекул хлорофилла только на высший уровень. Если такая система не имеет компонентов электронно-транспортной цепи, то электроны за очень короткое время возвращаются к предыдущему состоянию и молекулы отдают освобожденную энергию в виде света флуоресценции.

Темновая (термохимическая) фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте, и представляет собой ряд последовательных преобразований СО 2 , поступающего из воздуха. НАДФ. Н 2 и АТФ, образованные во время световой фазы, запускает циклический механизм темновых реакций – цикл Кальвина.

Углекислый газ присоединяется к акцептору – рибулозо-1,5-дифосфату . Образуется нестойкое шестиуглеродное (С6) соединение, которое распадается на две молекулы фосфоглицериновой кислоты (С3): начинается так называемый углеродный цикл фотосинтеза , который включает 13 и более этапов – последовательных и взаимообусловленных реакций, в результате которых образуются богатые энергией углеводы, а немного позже – жиры и белки. Важнейшие и узловые реакции и этапы этих преобразований:

- фосфоглицериновая кислота , используя кислотный остаток и энергию ранее синтезированной АТФ, превращается в дифосфоглицериновую кислоту;

- дифосфоглицериновая кислота с помощью водорода от НАДФ. Н 2 восстанавливается до фосфоглицеринового альдегида; последний может изомеризироваться в фосфодиоксиацетон, который может быть исходным для образования глицерола и жирных кислот;

Остатки фосфоглицеринового альдегида соединяются с образованным фосфодиоксиацетоном , образуя фруктозодифосфат – исходное вещество для синтеза растворимых углеводов, крахмала и других полисахаридов;

От части молекул фруктозодифосфата отщепляется по одному остатку фосфорной кислоты, вследствие чего образуется фруктозомонофосфат (фруктозо-6-фосфат);

- фруктозо-6-фосфат соединяется с фосфоглицериновым альдегидом, образуя одну молекулу эритрозофосфата и одну молекулу ксилулозофосфата; эти фосфорилированные 4- и 5-углеродные сахара в свою очередь в результате сложных реакций превращаются в некоторые аминокислоты (триптофан) и далее в НАДФ и азотистые основания; образование других аминокислот начинается на этапе образования фосфоглицериновой кислоты, часть которой отделяется;

- эритрозофосфат проходит ряд реакций, в результате которых образуется рибозофосфат;

Рибозофосфат с участием АТФ фосфорилируется и превращается в рибулезо-1,5-дифосфат и начинается новый цикл.

В результате шести циклов темновых реакций синтезируется одна молекула глюкозы и другие важные соединения, для чего необходимо 18 молекул АТФ и 12 молекул НАДФ. Н 2 , т. е. на восстановление одной молекулы СО 2 необходимо 3 АТФ и 2 НАДФ. Н 2 .

Фотосинтез Стадии фотосинтеза
Световая стадия (или энергетическая) Темновая стадия (или метаболическая)
Место протекание реакции В квантосомах мембран тилактоидов, протекает на свету. Осуществляется вне тилактоидов, в водной среде стромы.
Начальные продукты Энергия света, вода (Н2О), АДФ, хлорофилл СО2, рибулозодифосфат, АТФ, НАДФН2
Суть процесса Фотолиз воды, фосфорилирование В световой стадии фотосинтеза энергия света трансформируется в химическую энергию АТФ, а бедные энергией электроны воды переходят в богатые энергией электроны НАДФ·Н2. Побочным веществом, образующимся в ходе световой стадии, является кислород. Реакции световой стадии получили название "световых реакций". Карбоксилирование, гидрирование, дефосфорилирование В темновой стадии фотосинтеза протекают "темновые реакции" при которых наблюдается восстановительный синтез глюкозы из CO2. Без энергии световой стадии темновая стадия невозможна.
Конечные продукты О2, АТФ, НАДФН2 Богатые энергией продукты световой реакции - АТФ и НАДФ·Н2 далее используются в темновой стадии фотосинтеза. С6Н12О6
Взаимосвязь между световой и темновой стадиями можно выразить схемой
Процесс фотосинтеза эндергонический, т.е. сопровождается увеличением свободной энергии, поэтому требует значительного количества энергии, подведенной извне. Суммарное уравнение фотосинтеза: 6СО2 + 12Н2О--->С6Н12О62 + 6Н2О + 6О2 + 2861 кДж/моль.

Значение фотосинтеза :

1. «Консервирование» солнечной энергии : в процессе фотосинтеза световая энергия трансформируется в энергию химических связей синтезированных органических соединений. Такая форма энергии сохраняется до момента распада органических соединений, т. е. неопределенно долго. При полном окислении 1 г глюкозы выделяется 669 ккал, т. е. столько, сколько поглощается при ее образовании, Тепловая энергия, выделяющаяся при сгорании нефти, угля, торфа, древесины, - все это энергия Солнца, усвоенная и преобразованная растениями.

2. Образование свободного кислорода : свободный кислород необходим для дыхания всех аэробов – один человек за сутки потребляет 500 л кислорода, а за год – более 180 000 л.; кислородное дыхание обеспечивает по сравнению с анаэробным более высокий жизненный уровень, быстрый рост, интенсивное размножение, широкое расселение вида, т. е. биологический прогресс.

3. Образование разнообразных органических соединений : растения синтезируют углеводы, белки, жиры, которые служат пищей для животных и человека, сырьем для промышленности; растения образуют каучук, гуттаперчу, эфирные масла, смолы, дубильные вещества, алколоиды и т. п.; продукты переработки растительного сырья – это ткани, бумага, красители, лекарственные и взрывчатые вещества, искусственное волокно, строительные материалы и др.

4. Извлечение из атмосферы углекислого газа : ежегодно растения поглощают 15,6х10 10 тонн углекислого газа (1/16 часть мирового запаса) и 220 млрд. тонн воды. Количество органического вещества на Земле составляет 10 14 тонн, причем масса растений относится к массе животных как 2200:1.

Объяснение такого объемного материала, каким является фотосинтез, лучше проводить на двух спаренных уроках – тогда не теряется целостность восприятия темы. Урок необходимо начать с истории изучения фотосинтеза, строения хлоропластов и проведения лабораторной работы по изучению хлоропластов листа. После этого необходимо перейти к изучению световой и темновой фаз фотосинтеза. При объяснении реакций, происходящих в этих фазах, необходимо составить общую схему:

По ходу объяснения надо нарисовать схему световой фазы фотосинтеза .

1. Поглощение кванта света молекулой хлорофилла, которая находится в мембранах тилакоидов гран, приводит к потере ею одного электрона и переводит ее в возбужденное состояние. Электроны переносятся по электронтранспортной цепи, что приводит к восстановлению НАДФ + до НАДФ Н.

2. Место вышедших электронов в молекулах хлорофилла занимают электроны молекул воды – так вода под действием света подвергается разложению (фотолизу). Образовавшиеся гидроксилы ОН– становятся радикалами и объединяются в реакции 4 ОН – → 2 H 2 O +O 2 , приводящей к выделению в атмосферу свободного кислорода.

3. Ионы водорода Н+ не проникают через мембрану тилакоида и накапливаются внутри, заряжая его положительно, что приводит к увеличению разности электрических потенциалов (РЭП) на мембране тилакоида.

4. При достижении критической РЭП протоны устремляются по протонному каналу наружу. Этот поток положительно заряженных частиц используется для получения химической энергии с помощью специального ферментного комплекса. Образовавшиеся в результате молекулы АТФ переходят в строму, где участвуют в реакциях фиксации углерода.

5. Ионы водорода, вышедшие на поверхность мембраны тилакоида, соединяются с электронами, образуя атомарный водород, который идет на восстановление переносчика НАДФ + .

Спонсор публикации статьи группа компаний "Арис". Производство, продажа и аренда строительных лесов (рамные фасадные ЛРСП, рамные высотные А-48 и др.) и вышек-тур (ПСРВ "Арис", ПСРВ "Арис компакт" и "Арис-дачная", помосты). Хомуты для строительных лесов, строительные ограждения, колесные опоры для вышек. Узнать подробнее о компании, посмотреть каталог продукции и цены, контакты Вы сможете на сайте, который располагается по адресу: http://www.scaffolder.ru/.

После рассмотрения данного вопроса, проанализировав его еще раз по составленной схеме, предлагаем учащимся заполнить таблицу.

Таблица. Реакции световой и темновой фаз фотосинтеза

После заполнения первой части таблицы можно перейти к разбору темновой фазы фотосинтеза .

В строме хлоропласта постоянно присутствуют пентозы – углеводы, представляющие собой пятиуглеродные соединения, которые образуются в цикле Кальвина (цикл фиксации углекислого газа).

1. К пентозе присоединяется углекислый газ, образуется неустойчивое шестиуглеродное соединение, которое распадается на две молекулы 3-фосфоглицериновой кислоты (ФГК).

2. Молекулы ФГК принимают от АТФ по одной фосфатной группе и обогащаются энергией.

3. Каждая из ФГК присоединяет по одному атому водорода от двух переносчиков, превращаясь в триозу. Триозы, объединяясь, образуют глюкозу, а затем крахмал.

4. Молекулы триозы, объединяясь в разных сочетаниях, образуют пентозы и вновь включаются в цикл.

Суммарная реакция фотосинтеза:

Схема. Процесс фотосинтеза

Тест

1. Фотосинтез осуществляется в органеллах:

а) митохондрии;
б) рибосомы;
в) хлоропласты;
г) хромопласты.

2. Пигмент хлорофилл сосредоточен в:

а) оболочке хлоропласта;
б) строме;
в) гранах.

3. Хлорофилл поглощает свет в области спектра:

а) красной;
б) зеленой;
в) фиолетовой;
г) во всей области.

4. Свободный кислород при фотосинтезе выделяется при расщеплении:

а) углекислого газа;
б) АТФ;
в) НАДФ;
г) воды.

5. Свободный кислород образуется в:

а) темновой фазе;
б) световой фазе.

6. В световой фазе фотосинтеза АТФ:

а) синтезируется;
б) расщепляется.

7. В хлоропласте первичный углевод образуется в:

а) световой фазе;
б) темновой фазе.

8. НАДФ в хлоропласте необходим:

1) как ловушка для электронов;
2) в качестве фермента для образования крахмала;
3) как составная часть мембраны хлоропласта;
4) в качестве фермента для фотолиза воды.

9. Фотолиз воды – это:

1) накопление воды под действием света;
2) диссоциация воды на ионы под действием света;
3) выделение водяных паров через устьица;
4) нагнетание воды в листья под действием света.

10. Под воздействием квантов света:

1) хлорофилл превращается в НАДФ;
2) электрон покидает молекулу хлорофилла;
3) хлоропласт увеличивается в объеме;
4) хлорофилл превращается в АТФ.

ЛИТЕРАТУРА

Богданова Т.П., Солодова Е.А. Биология. Справочник для старшеклассников и поступающих в вузы. – М.: ООО «АСТ-Пресс школа», 2007.

НАДН – основа энергии и жизни


В обычном смысле биологическую жизнь можно определить как способность генерировать энергию внутри клетки. Эта энергия – макроэргические фосфатные связи химических веществ, синтезируемые в организме. Наиболее важными макроэргическими соединениями являются аденозинтрифосфат (АТФ), гуанозинтрифосфат (ГТФ), креатинфосфорная кислота, никотинамиддинуклеотид фосфат (НАД(Н) и НАДФ(Н)), фосфорилированные углеводы.



Никотинамид-аденин-динуклеотид (НАДН, NADН) – кофермент, присутствующий во всех живых клетках, входит в состав ферментов группы дегидрогеназ, катализирующих окислительно-восстановительные реакции; выполняет функцию переносчика электронов и водорода, которые принимает от окисляемых веществ. Восстановленная форма (NADH) способна переносить их на другие вещества.




Как повысить работоспособность


Что такое NADH? Многие её называют “аббревиатурой жизни”. И это действительно так. NADH (коэнзим никотинамидадениндинуклеотид) содержится во всех живых клетках и является жизненно необходимым элементом, при помощи которого внутри клеток вырабатывается энергия. NADH участвует в выработке АТФ (АТР). НАД(Н), как универсальная молекула энергии, в отличие от АТФ, постоянно может разгружать митохондрии от избыточного накопления лактата в сторону образования из него пирувата, за счёт стимуляции пируватдегидрогеназного комплекса, который чувствительный именно к отношению НАД(Н)/НАД.



Синдром хронической усталости: фокус на митохондрии


Ряд клинических исследований показал эффективность препаратов НАДН при СХУ. Суточная доза составляла обычно 50 мг. Наиболее сильный эффект наступал после 2-4 недель лечения. Утомляемость снижалась на 37-52 %. Кроме того, улучшался такой объективный когнитивный параметр, как концентрация внимания.



НАДН в лечении синдрома хронической усталости


НАДН (кофермент витамина В3), присутствующий во всех живых клетках, входит в состав ферментов группы дегидрогеназ, катализирующих окислительно-восстановительные реакции; выполняет функцию переносчика электронов и водорода, которые принимает от окисляемых веществ. Является резервным источником энергии в клетках. Он принимает участие практически во всех реакциях образования энергии, обеспечивая дыхание клеток. Воздействуя на соответствующие процессы в мозгу ко-фермент витамина В3, может предупреждать гибель нервных клеток при гипоксии или возрастных изменениях. Принимает участие в процессах детоксикации в печени. В последнее время установлено его свойство блокировать лактатдегидрогеназу и, тем самым, ограничивать ишемическое и/или гипоксическое повреждение миокарада. Исследования эффективности орального применения при лечении синдрома хронической усталости подтвердили его активизирующее влияние на состояние людей.



НАДН в спорте и медицине: обзор иностранной литературы


О НАДН (никотинамидадениндинуклеотидфосфате) мы писали в предыдущих статьях. Сейчас мы хотим предоставить информацию с англоязычных источников, о роли и значении этого вещества в обмене энергии в организме, его влиянии на нервную систему, и роли в развитии ряда патологических ситуаций и перспективах применения в медицине и спорте. (Скачать монографию о НАДН).



Herbalife Quickspark CoEnzyme 1 (NADH) ATP Energy

Natural Energy at a Cellular Level




Quickspark is a product of the company Herbalife. It is a stable form of Vitamin B3 CoEnzyme1. CoEnzyme1 was found in 1906 in Austria by a scientist called Professor George Birkmayer. CoEnzyme1 was developed for medical purposes and used in the second world war.



NADH (Enada)


Nicotinamide adenine dinucleotide (NADH) is a substance that helps the functionality of enzymes in the body. NADH plays a role in the production of energy and helps produce L-dopa, which the body turns into the neurotransmitter dopamine. NADH is being evaluated for many conditions and may be helpful for enhancing mental functionality and memory.

Рис. 12. Схема переноса электронов хлорофилла в процессе синтеза АТФ (фосфорилирования). При нециклическом фосфорилировании за счет энергии ФС II идет синтез АТФ, а за счет ФС I идет синтез НАДФ · 2Н. При циклическом фосфорилировании работает только ФС I и происходит синтез АТФ

Под действием света происходит возбуждение молекул хлорофилла ФС I и ФС II, которые, поглощая кванты света, испускают возбужденные электроны. За счет энергии электронов, летящих по цепи ферментов от ФС II к ФС I, происходит синтез молекул АТФ. Этот процесс называется фосфорилированием и происходит в присутствии фермента АТФ-синтетазы.

АДФ + Фн АТФ

где Фн - неорганический фосфат H3 PO4 .

Электроны ФС II, потерявшие энергию, попадают на ФС I, которая является их конечным акцептором.

Электроны, покидающие хлорофилл фотосистемы ФС I при поглощении света, также попадают на электроннотранспортную цепь. Но за счет их энергии идет соединение протонов Н+ с переносчиком НАДФ+ .

Электроны, которые теряет ФС I, восполняются электронами ФС II, а электроны, отданные молекулой воды при фотолизе, восполняют электроны, потерянные хлорофиллом ФС II, и он также восстанавливается:

хлорофилл+2 + 2ē хлорофилл.

На мембране имеются специальные протонные каналы, по которым в определенный момент ионы водорода могут переходить из Н+ -резервуара тилакоида в строму хлоропласта. Каналы связаны с ферментом АТФ-синтетазой. Когда возбужденные электроны ФС I, двигаясь по мембране, достигают протонного канала, он открывается и в него устремляются ионы водорода. Этот процесс сопряжен с синтезом АТФ и происходит синхронно.

С наружной стороны мембраны тилакоида, т. е. в строме хлоропласта, скапливаются молекулы переносчика водорода НАДФ+ в окисленном состоянии. Они принимают электроны от ФС I, за счет чего происходит их соединение с ионами водорода Н+ и образование НАДФ · 2H:

НАДФ+ + 2H+ + 2ē НАДФ · 2Н. (4)

Синтез АТФ и НАДФ · 2Н протекает на мембранах тилакоидов и сопряжен с переносом возбужденных электронов по электронно-транспортной цепи. Таким образом, энергия солнца преобразуется в энергию возбужденных электронов, а далее запасается в процессе синтеза в молекулах АТФ и НАДФ · 2Н.

Суммарное уравнение реакций световой фазы:

H2 O + НАДФ+ + 2АДФ + 2Фн НАДФ · 2Н + 2АТФ + 1 /2 O2 .

Темновая фаза

Реакции темновой фазы (рис. 13) протекают в строме хлоропластов, куда поступают молекулы НАДФ · 2Н и АТФ, синтезированные в световую фазу, и углекислый газ из атмосферы. Последовательность циклических реакций этой фазы была описана американским ученым-биохимиком Мэлвином Кальвином и получила название цикла Кальвина. Здесь происходит связывание молекул CO2 , активирование соединений за счет АТФ (фосфорилирование), восстановление углерода водородом из НАДФ · 2Н и синтез глюкозы. Источником энергии являются синтезированные на первой стадии молекулы АТФ.

Рис. 13. Общая схема темновых реакций фотосинтеза. Цикл Кальвина

В строме хлоропласта постоянно присутствует пятиуглеродный углевод (пентоза), связанный с двумя остатками фосфорной кислоты - рибулозодифосфат.

Образующееся шестиуглеродное соединение неустойчиво и сразу же распадается на два триозофосфата.

С5 -углевод-2Ф + CO2 С6 -углевод-2Ф 2С3 -Ф

2С3 Ф + 2АТФ 2АДФ + 2С3 ~2Ф.

Рис. 14. Фиксация углерода, его фосфорилирование и восстановление

После этого происходит восстановление триозодифосфатов молекулами НАДФ · 2Н:

2С3 ~2Ф + 2НАДФ · 2Н 2С3 + 2НАДФ+ + 2Ф.

Две молекулы триозы соединяются между собой, и образуется глюкоза, которая может в дальнейшем превращаться в сахарозу, крахмал и другие полисахариды:

2С3 С6 Н12 O6 .

Часть молекул триоз может использоваться для синтеза аминокислот, глицерина, высших жирных кислот.

Частично триозы продолжают участвовать в циклических реакциях и превращаются вновь в пентозу, которая замыкает цикл.

В реакции участвуют одновременно шесть молекул каждого вещества. Таким образом, для синтеза одной полностью новой молекулы глюкозы цикл должен повториться шесть раз, т. е. должно усвоиться шесть молекул CO2 .

Освобожденные молекулы АТФ и НАДФ+ вновь возвращаются к мембранам тилакоидов для участия в световых реакциях.

Влияние на скорость фотосинтеза различных факторов

Интенсивность фотосинтеза зависит от целого ряда факторов. Во-первых, это длина световой волны.

Наиболее интенсивен процесс в ультрафиолетовой и красной части спектра. Кроме того, скорость фотосинтеза зависит от степени освещенности, и до определенной величины она возрастает пропорционально освещенности, но далее уже не зависит от нее (рис. 15).

Рис. 15. Влияние различных факторов на скорость фотосинтеза

Другим фактором является концентрация углекислого газа. Чем выше количество углекислого газа, тем интенсивнее идет процесс фотосинтеза. В обычных условиях недостаток углекислого газа является главным лимитирующим фактором, так как в атмосферном воздухе содержится небольшой его процент. Однако в условиях теплиц можно устранить этот дефицит, что благоприятно влияет на интенсивность роста и развития растений.

Немаловажным фактором является температура.

Все реакции фотосинтеза катализируются ферментами, для которых оптимальной температурой является интервал 25–30 °C. При низких температурах скорость действия ферментов резко снижается.

Вода является также важным фактором, влияющим на фотосинтез. Однако оценить количественно этот фактор невозможно, так как она участвует во многих других обменных процессах.

Как происходит преобразование энергии солнечного света в световой и темновой фазах фотосинтеза в энергию химических связей глюкозы? Ответ поясните.

Ответ

В световой фазе фотосинтеза энергия солнечного света преобразуется в энергию возбужденных электронов, а затем энергия возбужденных электронов преобразуется в энергию АТФ и НАДФ-Н2 . В темновой фазе фотосинтеза энергия АТФ и НАДФ-Н2 преобразуется в энергию химических связей глюкозы.

Что происходит в световую фазу фотосинтеза?

Ответ

Электроны хлорофилла, возбужденные энергией света, идут по электроно-транспортным цепям, их энергия запасается в АТФ и НАДФ-Н2 . Происходит фотолиз воды, выделяется кислород.

Какие основные процессы происходят в темновую фазу фотосинтеза?

Ответ

Из углекислого газа, полученного из атмосферы, и водорода, полученного в световой фазе, за счет энергии АТФ, полученной в световой фазе, образуется глюкоза.

Какова функция хлорофилла в растительной клетке?

Ответ

Хлорофилл участвует в процессе фотосинтеза: в световой фазе хлорофилл поглощает свет, электрон хлорофилла получает энергию света, отрывается и идет по электроно-транспортной цепи.

Какую роль играют электроны молекул хлорофилла в фотосинтезе?

Ответ

Электроны хлорофилла, возбужденные солнечным светом, проходят по электронотранспортным цепям и отдают свою энергию на образование АТФ и НАДФ-Н2 .

На каком этапе фотосинтеза образуется свободный кислород?

Ответ

В световой фазе, во время фотолиза воды.

В какую фазу фотосинтеза происходит синтез АТФ?

Ответ

Всветовую фазу.

Какое вещество служит источником кислорода во время фотосинтеза?

Ответ

Вода (кислород выделяется при фотолизе воды).

Скорость фотосинтеза зависит от лимитирующих (ограничивающих) факторов, среди которых выделяют свет, концентрацию углекислого газа, температуру. Почему эти факторы являются лимитирующими для реакций фотосинтеза?

Ответ

Свет необходим для возбуждения хлорофилла, он поставляет энергию для процесса фотосинтеза. Углекислый газ необходим в темновой фазе фотосинтеза, из него синтезируется глюкоза. Изменение температуры ведет к денатурации ферментов, реакции фотосинтеза замедляются.

В каких реакциях обмена у растений углекислый газ является исходным веществом для синтеза углеводов?

Ответ

В реакциях фотосинтеза.

В листьях растений интенсивно протекает процесс фотосинтеза. Происходит ли он в зрелых и незрелых плодах? Ответ поясните.

Ответ

Фотосинтез происходит в зеленых частях растений на свету. Таким образом, фотосинтез происходит в кожице зеленых плодов. Внутри плодов и в кожице спелых (не зеленых) плодов фотосинтез не происходит.



error: Контент защищен !!