Окисление жирных кислот в организме человека. Окисление жирных кислот

«Свободными жирными кислотами» (СЖК) называют жирные кислоты, находящиеся в неэстерифицированной форме; иногда их называют неэстерифицированными жирными кислотами (НЖК). В плазме крови длинноцепочечные СЖК образуют комплекс с альбумином, а в клетке - с белком, связывающим жирные кислоты, который называют Z-белком; фактически они никогда не бывают свободными. Короткоцепочечные жирные кислоты лучше растворяются в воде и находятся либо в виде неионизированной кислоты, либо в виде аниона жирной кислоты.

Активация жирных кислот

Так же как и в случае метаболизма глюкозы, жирная кислота прежде всего должна превратиться в активное производное в результате реакции, протекающей с участием АТР, и только после этого она способна взаимодействовать с ферментами, катализирующими дальнейшее превращение. В процессе окисления жирных кислот эта стадия является единственной, требующей энергии в виде АТР. В присутствии АТР и кофермента А фермент ацил-СоА-синтетаза (тиокиназа) катализирует превращение свободной жирной кислоты в «активную жирную кислоту» или ацил-СоА, которое осуществляется за счет расщепления одной богатой энергией фосфатной связи.

Присутствие неорганической пирофосфатазы, которая расщепляет богатую энергией фосфатную связь в пирофосфате, обеспечивает полноту протекания процесса активации. Таким образом, для активации одной молекулы жирной кислоты в итоге расходуются две богатые энергией фосфатные связи.

Ацил-СоА-синтетазы находятся в эндоплазмати-ческом ретикулуме, а также внутри митохондрий и на их наружной мембране. В литературе описан ряд ацил-СоА-синтетаз; они специфичны к жирным кислотам с определенной длиной цепи.

Роль карнитина в окислении жирных кислот

Карнитин является широко распространенным соединением,

особенно много его в мышцах. Он образуется из лизина и метионина в печени и почках. Активация низших жирных кислот и их окисление могут происходить в митохондриях независимо от карнитина, однако длинноцепочечные ацил-СоА-производные (или СЖК) не могут проникать в митохондрии и окисляться, если предварительно не образуют ацилкарнитин-производных. На наружной стороне внутренней мембраны митохондрий имеется фермент карнитин-пальмитоилтрансфераза I, который переносит длинноцепочечные ацильные группы на карнитин с образованием ацилкарнитина; последний способен проникать в митохондрии, где находятся ферменты, катализирующие процесс (-окисления.

Возможный механизм, объясняющий участие карнитина в окислении жирных кислот в митохондриях, приведен на рис. 23.1. Кроме того, в митохондриях находится другой фермент - карнитин-ацетилтрансфераза, который катализирует перенос короткоцепочечных ацильных групп между СоА и карнитином. Функция этого фермента пока не ясна.

Рис. 23.1. Роль карнитина в переносе длинноцепочечных жирных кислот через внутреннюю мембрану митохондрий. Длиннопепочечный ацил-СоА не способен проходить через внутреннюю мембрану митохондрий, в то время как такой способностью обладает ацилкарнитин, образую цийся при Действии карнитин-пальмитонлтрансферазы I. Карнитин-ацилкарнитин-фанслоказа является транспортной системой. осуществляющей перенос молекулы ацилкарнитина через внутреннюю мембрану митохондрии, сопряженный с выходом мопскулы свободного карнитина. Затем при действии карнитин-пальмитоилтрансферазы 11, локализованной на внутренней поверхности внутренней мембраны митохондрии, ацилкарнитин взаимодействует с СоА. В результате в митохондриальном матриксе вновь образуется ацил-СоА. а карнитин высвобождается.

Возможно,

он облегчает транспорт ацетильных групп через мембрану митохондрий.

b-Окисление жирных кислот

Общее представление дает рис. 23.2. При 13-окислении жирных кислот 2 атома углерода одновременно отщепляются от карбоксильного конца молекулы ацил-СоА. Углеродная цепь разрывается

Рис. 23.2. Схема -окисления жирных кислот.

между атомами углерода в положениях , откуда и возникло название -окисление. Образующиеся двухуглеродные фрагменты представляют собой ацетил-СоА. Так, в случае пальмитоил-СоА образуется 8 молекул ацетил-СоА.

Последовательность реакций

Ряд ферментов, известных под общим названием «оксидазы жирных кислот», находятся в митохондриальном матриксе в непосредственной близости от дыхательной цепи, локализованной во внутренней мембране митохондрий. Эта система катализирует окисление ацил-СоА до ацетил-СоА, которое сопряжено с фосфорилированием ADP до АТР (рис. 23.3).

После проникновения ацильного фрагмента через мембрану митохондрий при участии карнитиновой транспортной системы и переноса ацильной группы от карнитина на происходит отщепление двух атомов водорода от углеродных атомов в положениях катализируемое ацил-СоА-дегидрогеназои. Продуктом этой реакции является . Фермент представляет собой флавопротеин, его простетической группой служит FAD. Окисление последнего в дыхательной цепи митохондрий происходит при участии другого флавопротеина. названного электронпереносящим флавопротеином [см. с. 123). Далее происходит гидратация двойной связи, в результате чего образуется 3-гидроксиацил-СоА. Эта реакция катализируется ферментом А2-еноил-СоА-гидратазой. Затем 3-гидроксиацил-ОоА дегидрируется по 3-му атому углерода с образованием 3-кетоацил-СоА; эта реакция катализируется 3-гидроксиацил-СоА-дегидрогеназой при,участии в качестве кофермента NAD. 3-Кетоацил-СоА расщепляется между вторым и третьим атомами углерода 3-кетотиолазой или ацетил-СоА-ацнлтрансферазой с образованием ацетил-СоА- и ацил-СоА-производного, которое на 2 атома углерода короче исходной молекулы ацил-СоА. Это тиолитическое расщепление требует участия еще одной молекулы Образующийся укороченный ацил-СоА вновь вступает в цикл Р-окисления, начиная с реакции 2 (рис. 23.3). Таким путем длинноцепочечные жирные кислоты могут полностью расщепляться до ацетил-СоА (С2-фрагментов); последние в цикле лимонной кислоты, который протекает в митохондриях, окисляются до

Окисление жирных кислот с нечетным числом атомов углерода

b-Окисление жирных кислот с нечетным числом атомов углерода заканчивается на стадии образования трехуглеродного фрагмента - пропионил-СоА, который затем превращается в являющийся интермедиатом цикла лимонной кислоты (см. также рис. 20.2).

Энергетика процесса окисления жирных кислот

В результате переноса электронов по дыхательной цепи от восстановленного флавопротеина и NAD синтезируется по 5 богатых энергией фосфатных связей (см. гл. 13) на каждые 7 (из 8) молекул ацетил-СоА, образующихся при b-окислении пальмитиновой кислоты Всего образуется 8 молекул ацетил-СоА, и каждая из них, проходя через цикл лимонной кислоты, обеспечивает синтез 12 богатых энергией связей. Всего в расчете на молекулу пальмитата по этому пути генерируется 8 х 12 = 96 богатых энергией фосфатных связей. Если учесть две связи, необходимые для активации

(см. скан)

Рис. 23.3. Р Окисление жирных кислот. Длинноцепочечный ацит СоА последовательно укорачивается, проходя цикт за циклом ферментативные реакции 2-5; в результате каждого цикла происходит отщепление ацетил-СоА, катализируемое тиолазой (реакция 5). Когда остается четырехуглеродный ацильный радикал, то из него в результате реакции 5 образуются две молекулы ацетил-СоА.

жирной кислоты, то в общей сложности получим 129 богатых энергией связей на 1 моль или кДж. Поскольку свободная энергия сгорания пальмитиновой кислоты составляет то на долю энергии, запасаемой в виде фосфатных связей при окислении жирной кислоты, приходится около 40%.

Окисление жирных кислот в пероксисомах

В пероксисомах -окисление жирных кислот происходит в модифицированном виде. Продуктами окисления в данном случае являются ацетил-СоА и , последняя образуется на стадии, катализируемой связанной с флавопротеином дегидрогеназой. Этот путь окисления непосредственно не сопряжен с фосфорилированием и образованием АТР, но он обеспечивает расщепление жирных кислот с очень длинной цепью (например, ); он включается при диете, богатой жирами, или приеме гиполипидемических лекарственных препаратов, таких, как клофибрат. Ферменты пероксисом не атакуют жирные кислоты с короткими цепями, и процесс Р-окисления останавливается при образовании октаноил-СоА. Октаноильные и ацетильные группы удаляются затем из пероксисом в виде октаноилкарнитина и ацетилкарнитина и окисляются в митохондриях.

а- и b-Окисление жирных кислот

Окисление является основным путем катаболизма жирных кислот. Однако недавно было обнаружено, что в тканях мозга происходит -окисление жирных кислот, т. е. последовательное отщепление одноуглеродных фрагментов от карбоксильного конца молекулы. В этом процессе участвуют интермедиаты, содержащие он не сопровождается образованием богатых энергией фосфатных связей.

Окисление жирных кислот в норме весьма незначительно. Этот тип окисления, катализируемый гидроксилазами при участии цитохрома с. 123), протекает в эндоплазматическом -Группа превращается в --группу, которая затем окисляется до -СООН; в результате образуется дикарбоновая кислота. Последняя расщепляется путем Р-окисления обычно до адипиновой и субериновой кислот, которые затем удаляются с мочой.

Клинические аспекты

Кетоз развивается при высокой скорости окисления жирных кислот в печени, особенно в тех случаях, когда оно происходит на фоне недостатка углеводов (см. с. 292). Подобное состояние возникает при приеме пищи, богатой жирами, голодании, сахарном диабете, кетозе у лактирующих коров и токсикозе беременности (кетозе) у овец. Ниже приводятся причины, вызывающие нарушение процесса окисления жирных кислот.

Недостаток карнитина встречается у новорожденных, чаще всего недоношенных детей; он обусловлен либо нарушением биосинтеза карнитина; либо его «утечкой» в почках. Потери карнитина могут происходить при гемодиализе; больные, страдающие органической ацидурией, теряют большое количество карнитина, который экскретируется из организма в форме конъюгатов с органическими кислотами. Для восполнения потерь этого соединения некоторые пациенты нуждаются в особой диете, включающей продукты, содержащие карнитин. Признаками и симптомами недостатка карнитина являются приступы гипогликемии, возникающие из-за снижения глюконеогенеза в результате нарушения процесса - окисления жирных кислот, уменьшение образования кетоновых тел, сопровождающееся повышением содержания СЖК в плазме крови, мышечная слабость (миастения), а также накопление липидов. При лечении внутрь принимают препарат карнитина. Симптомы недостатка карнитина очень сходны с симптомами синдрома Рейе (Reye), при котором, однако, содержание карнитина является нормальным. Причина синдрома Рейе пока неизвестна.

Снижение активности карнитинпальмитоилтрансферазы печени приводит к гипогликемии и понижению содержания кетоновых тел в плазме крови, а снижение активности карнитин-пальмитоилтраисферазы мышц - к нарушению процесса окисления жирных кислот, в результате чего периодически возникает мышечная слабость и развивается миоглобинурия.

Ямайская рвотная болезнь возникает у людей после употребления в пищу незрелых плодов аки (Blig-hia sapida), которые содержат токсин гипоглицнн, инактивирующий ацил-СоА-дегидрогеназу, в результате чего ингибируется процесс -окисления.

При дикарбоновой ацидурии происходит экскреция кислот и развивается гипогликемия, не связанная с повышением содержания кетоновых тел. Причиной данного заболевания является отсутствие в митохондриях ацил-СоА-дегидрогеназы среднецепочечных жирных кислот. При этом нарушается -окисление и усиливается -окисление длинноцепочечных жирных кислот, которые укорачиваются до среднецепочечных дикарбоновых кислот, выводимых из организма.

Болезнь Рефсума является редким неврологическим заболеванием, которое вызывается накоплением в тканях фитановой кислоты, образующейся из фитола; последний входит в состав хлорофилла, поступающего в организм с продуктами растительного происхождения. Фитановая кислота содержит метальную группу у третьего атома углерода, это блокирует ее -окисление. В норме эта метильная группа

(см. скан)

Рис. 23.4. Последовательность реакций окисления ненасыщенных жирных кислот на примере, линолевой кислоты. -Жирные кислоты либо жирные кислоты, образующие вступают на данный путь на стадии указанной на схеме.

удаляется при а-окислении, но у людей, страдающих болезнью Рефсума, имеется врожденное нарушение системы а-окисления, что приводит к накоплению фитановой кислоты в тканях.

Синдром Цельвегера (Zellweger) или цереброгепаторенальный синдром является редким наследственным заболеванием, при котором во всех тканях отсутствуют пероксисомы. У больных, страдающих синдромом Цельвегера, в мозгу накапливаются кислоты, поскольку из-за отсутствия пероксисом у них не происходит процесс окисления длинноцепочечных жирных кислот.

Окисление ненасыщенных жирных кислот

-окислении.

Перекисное окисление полиненасыщенных жирных кислот в микросомах

NADPH-зависимое перекисное окисление ненасыщенных жирных кислот катализируется ферментами, локализованными в микросомах (см. с. 124). Антиоксиданты, например БГТ (бутилированный гидрокситолуол) и а-токоферол (витамин Е), ингибируют перекисное окисление липидов в микросомах.

Процесс окисления жирных кислот складывается из следующих основных этапов.

Активация жирных кислот. Свободная жирная кислота независимо от длины углеводородной цепи является метаболически инертной и не может подвергаться никаким биохимическим превращениям, в том числе окислению, пока не будет активирована. Активация жирной кислоты протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима A (HS-KoA) и ионов Mg 2+ . Реакция катализируется ферментом ацил-КоА-синтетазой:

В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

Первая стадия дегидрирования. Ацил-КоА в митохондриях прежде всего подвергается ферментативному дегидрированию, при этом ацил-КоА теряет 2 атома водорода в α- и β-положениях, превращаясь в КоА-эфир ненасыщенной кислоты.

Стадия гидратации. Ненасыщенный ацил-КоА (еноил-КоА) при участии фермента еноил-КоА-гидратазы присоединяет молекулу воды. В результате образуется β-оксиацил-КоА (или 3-гидроксиацил-КоА):

Вторая стадия дегидрирования. Образовавшийся β-оксиацил-КоА (3-гидроксиацил-КоА) затем дегидрируется. Эту реакциюкатализируют НАД + -зависимые дегидрогеназы:

Тиолазная реакция. представляет собой расщепление 3-оксоацил-КоА с помощью тиоловой группы второй молекулы КоА. В результате образуется укороченный на два углеродных атома ацил-КоА и двууглеродный фрагмент в виде ацетил-КоА. Данная реакция катализируется ацетил-КоА-ацилтрансферазой (β-ке-тотиолазой):

Образовавшийся ацетил-КоА подвергается окислению в цикле трикар-боновых кислот, а ацил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), который в свою очередь окисляется до 2 молекул ацетил-КоА.

Баланс энергии. При каждом цикле β-окисления образуются одна молекула ФАДН 2 и одна молекула НАДН. Последние в процессеокисления в дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН 2 – 2 молекулы АТФ и НАДН – 3 молекулы АТФ, т.е. в сумме за один цикл образуется 5 молекул АТФ. При окислении пальмитиновой кислоты образуется 5 х 7 = 35 молекул АТФ. В процессе β-окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых, «сгорая» в цикле трикарбоновых кислот, дает 12 молекул АТФ, а 8 молекул ацетил-КоА дадут 12 х 8 = 96 молекул АТФ.

Таким образом, всего при полном β-окислении пальмитиновой кислоты образуется 35 + 96 = 131 молекула АТФ. С учетом одноймолекулы АТФ, потраченной в самом начале на образование активной формы пальмитиновой кислоты (пальмитоил-КоА), общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 131 – 1 = 130 молекул АТФ.

Для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ существует метаболический путь окисления жирных кислот до СО 2 и воды, тесно связанный с циклом трикарбоновых кислот и дыхательной цепью. Этот путь называется β-окисление , т.к. происходит окисление 3-го углеродного атома жирной кислоты (β-положение) в карбоксильную группу, одновременно от кислоты отщепляется ацетильная группа, включающая С 1 и С 2 исходной жирной кислоты.

Элементарная схема β-окисления

Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Для окисления используются жирные кислоты, поступающие в цитозоль из крови или появляющиеся при липолизе собственных внутриклеточных ТАГ. Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

Пальмитоил-SКоА + 7ФАД + 7НАД + + 7Н 2 O + 7HS-KoA → 8Ацетил-SКоА + 7ФАДН 2 + 7НАДН

Этапы окисления жирных кислот

1. Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться в цитозоле. Это осуществляется присоединением к ней коэнзима А с образованием ацил-SКоА. Ацил-SКоА является высокоэнергетическим соединением. Необратимость реакции достигается гидролизом дифосфата на две молекулы фосфорной кислоты.

Ацил-SКоА-синтетазы находятся в эндоплазматическом ретикулуме, на наружной мембране митохондрий и внутри них. Существует широкий ряд синтетаз, специфичных к разным жирным кислотам.

Реакция активации жирной кислоты

2. Ацил-SКоА не способен проходить через митохондриальную мембрану, поэтому существует способ его переноса в комплексе с витаминоподобным веществом карнитином . На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I .

Карнитин-зависимый транспорт жирных кислот в митохондрию

Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно велико. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы. Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен "смерти в колыбели ".

Дети раннего возраста, недоношенные и дети с малой массой особен-но чувствительны к недостаточности карнитина. Эндогенные запасы у них быстро истощаются при различных стрессовых ситуациях (инфекционные заболевания, желудочно-кишечные расстройства, нарушения вскармливания). Биосинтез карнитина резко ограничен в связи с небольшой мышечной массой, а поступление с обычными пищевыми продуктами неспособно поддержать достаточный уровень в крови и тканях.

3. После связывания с карнитином жирная кислота переносится через мембрану транслоказой . Здесь на внутренней стороне мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-SКоА который вступает на путь β-окисления.

4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА . К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.

Последовательность реакций β-окисления жирных кислот

Расчет энергетического баланса β-окисления

Ранее при расчете эффективности окисления коэффициент P/O для НАДH принимался равным 3,0, для ФАДH 2 – 2,0.

По современным данным значение коэффициента P/O для НАДH соответствует 2,5, для ФАДH 2 – 1,5.

При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:

  • количество образуемого ацетил-SКоА – определяется обычным делением числа атомов углерода в жирной кислоте на 2.
  • число циклов β-окисления . Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 -1), где n – число атомов углерода в кислоте.
  • число двойных связей в жирной кислоте. В первой реакции β-окисления происходит образование двойной связи при участии ФАД. Если двойная связь в жирной кислоте уже имеется, то необходимость в этой реакции отпадает и ФАДН 2 не образуется. Количество недополученных ФАДН 2 соответствует числу двойных связей. Остальные реакции цикла идут без изменений.
  • количество энергии АТФ , потраченной на активацию (всегда соответствует двум макроэргическим связям).

Пример. Окисление пальмитиновой кислоты

  • так как имеется 16 атомов углерода, то при β-окислении образуется 8 молекул ацетил-SКоА . Последний поступает в ЦТК, при его окислении в одном обороте цикла образуется 3 молекулы НАДН (7,5 АТФ), 1 молекула ФАДН 2 (1,5 АТФ) и 1 молекула ГТФ, что эквивалентно 10 молекулам АТФ. Итак, 8 молекул ацетил-SКоА обеспечат образование 8×10=80 молекул АТФ.
  • для пальмитиновой кислоты число циклов β-окисления равно 7 . В каждом цикле образуется 1 молекула ФАДН 2 (1,5 АТФ) и 1 молекула НАДН (2,5 АТФ). Поступая в дыхательную цепь, в сумме они "дадут" 4 молекулы АТФ. Таким образом, в 7 циклах образуется 7×4=28 молекул АТФ.
  • двойных связей в пальмитиновой кислоте нет .
  • на активацию жирной кислоты идет 1 молекула АТФ, которая, однако, гидролизуется до АМФ, то есть тратятся 2 макроэргические связи или две АТФ .

Таким образом, суммируя, получаем 80+28-2 =106 молекул АТФ образуется при окислении пальмитиновой кислоты.

Кнооп в 1904 г. выдвинул гипотезу β-окисления жирных кислот на основании опытов по скармливанию кроликам различных жирных кислот, в которых один атом водорода в концевой метальной группе (у ω-углеродного атома) был замещен фенильным радикалом (С 6 Н 5 -).

Кнооп высказал предположение, что окисление молекулы жирной кислоты в тканях организма происходит в β-положении; в результате происходит последовательное отсечение от молекулы жирной кислоты двууглеродных фрагментов со стороны карбоксильной группы.

Жирные кислоты, входящие в состав естественных жиров животных и растений, принадлежат к ряду с четным числом углеродных атомов. Любая такая кислота, отщепляя по паре углеродных атомов, в конце концов проходит через стадию масляной кислоты, которая после очередного β-окисления должна дать ацетоуксусную кислоту. Последняя затем гидролизуется до двух молекул уксусной кислоты.

Теория β-окисления жирных кислот, предложенная Кноопом, не потеряла своего значения и до настоящего времени и является в значительной мере основой современных представлений о механизме окисления жирных кислот.

Современные представления об окислении жирных кислот

Установлено, что окисление жирных кислот в клетках происходит в митохондриях при участии мультиферментного комплекса. Известно также, что жирные кислоты первоначально активируются при участии АТФ и HS-KoA; субстратами на всех последующих стадиях ферментативного окисления жирных кислот служат КоА-эфиры этих кислот; выяснена также роль карнитина в транспорте жирных кислот из цитоплазмы в митохондрии.

Процесс окисления жирных кислот складывается из следующих основных этапов.

Активация жирных кислот и их проникновение из цитоплазмы в митохондрии . Образование "активной формы" жирной кислоты (ацил-КоА) из коэнзима А и жирной кислоты является эндергоническим порцессом протекающим за счет использования энергии АТФ:

Реакция катализируется ацил-КоА-синтетазой. Существует несколько таких ферментов: один из них катализирует активацию жирных кислот, содержащих от 2 до 3 углеродных атомов, другой- от 4 до 12 атомов, третий - от 12 и более атомов углерода.

Как уже отмечалось, окисление жирных кислот (ацил-КоА) происходит в митохондриях. В последние годы было показано, что способность ацил-КоА проникать из цитоплазмы в митохондрии резко возрастает в присутствии азотистого основания - карнитина (γ-триметиламино-β-гидроксибутирата). Ацил-КоА, соединяясь с карнитином, при участии специфического цитоплазматического фермента (карнитин-ацил-КоА-трансферазы) образует ацилкарнитин (эфир карнитина и жирной кислоты), который обладает способностью проникать внутрь митохондрии:

После прохождения ацилкарнитина через мембрану митохондрии происходит обратная реакция - расщепление ацилкарнитина при участии HS-KoA и митохондриальной карнитин-ацил-КоА-трансферазы:

При этом карнитин возвращается в цитоплазму клетки, а ацил-КоА подвергается в митохондриях окислению.

Первая стадия дегидрирования. Ацил-КоА в митохондриях прежде всего подвергается ферментативному дегидрированию;

при этом ацил-КоА теряет два атома водорода в α- и β-положении, превращаясь в КоА-эфир ненасыщенной кислоты:

По-видимому, существует несколько ФАД-содержащих ацил-КоА-дегидрогеназ, каждая из которых обладает специфичностью по отношению к ацил-КоА с определенной длиной углеродной цепи.

Стадия гидратации. Ненасыщенный ацил-КоА (еноил-КоА) при участии фермента еноил-КоА-гидратазы присоединяет молекулу воды. В результате образуется β-гидроксиацил-КоА:

Вторая стадия дегидрирования. Образовавшийся β-гидроксиацил-КоА затем дегидрируется. Эту реакцию катализируют НАД-зависимые дегидрогеназы. Реакция протекает по следующему уравнению:

В этой реакции β-кетоацил-КоА взаимодействует с коэнзимом А. В результате происходит расщепление β-кетоацил-КоА и образуется укороченный на два углеродных атома ацил-КоА и двууглеродный фрагмент в виде ацетил-КоА. Данная реакция катализируется ацетил-КоА-ацилтрансфе-разой (или тиолазой):

Образовавшийся ацетил-КоА подвергается окислению в цикле трикарбоновых кислот (цикле Кребса), а ацил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), который в свою очередь окисляется до двух молекул ацетил-КоА (см. схему).

Например, в случае пальмитиновой кислоты (С 16) повторяются 7 циклов окисления. Запомним, что при окислении жирной кислоты, содержащей n углеродных атомов, происходит n/2 - 1 циклов β-окисления (т. е. на один цикл меньше, чем n/2 , так как при окислении бутирил-КоА сразу происходит образование двух молекул ацетил-КоА) и всего получится n/2 молекул ацетил-КоА.

Следовательно, суммарное уравнение р-окисления пальмитиновой кислоты можно написать так:

Пальмитоил-КоА + 7 ФАД + 7 НАД + 7Н 2 O + 7HS-KoA --> 8 Ацетил - КоА + 7 ФАДН 2 + 7 НАДН 2 .

Баланс энергии. При каждом цикле β-окисления образуются 1 молекула ФАДН 2 и 1 молекула НАДН 2 . Последние в процессе окисления в дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН 2 - две молекулы АТФ и НАДН 2 - три молекулы АТФ, т. е. в сумме за один цикл образуется 5 молекул АТФ. В случае окисления пальмитиновой кислоты проходит 7 циклов β-окисления (16/2 - 1 = 7), что ведет к образованию 5X7 = 35 молекул АТФ. В процессе β-окисления пальмитиновой кислоты образуется - молекул ацетил-КоА, каждая из которых, сгорая в цикле трикарбоновых кислот, дает 12 молекул АТФ, а 8 молекул дадут 12X8 = 96 молекул АТФ.

Таким образом, всего при полном окислении пальмитиновой кислоты образуется 35+96=131 молекула АТФ. Однако с учетом одной молекулы АТФ, потраченной в самом начале на образование активной формы пальмитиновой кислоты (пальмитоил-КоА), общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 131-1 = 130 молекул АТФ (заметим, что при полном окислении одной молекулы глюкозы образуется лишь 36 молекул АТФ).

Подсчитано, что если изменение свободной энергии системы (ΔG) при полном сгорании одной молекулы пальмитиновой кислоты составляет 9797 кДж, а богатая энергией концевая фосфатная связь АТФ характеризуется величиной около 34,5 кДж, то выходит, что примерно 45% всей потенциальной энергии пальмитиновой кислоты при ее окислении в организме может быть использовано для ресинтеза АТФ, а оставшаяся часть, по-видимому, теряется в виде тепла.

Окисление жирных кислот протекает в печени, почках, скелетных и сердечных мышцах, в жировой ткани.

Ф.Кнооп высказал предположение, что окисление молекулы жирной кислоты в тканях организма происходит в b-окислении. В результате от молекулы жирной кислоты отщепляются двууглеродные фрагменты со стороны карбоксильной группы. Процесс b-окисления жирных кислот складывается из следующих этапов:

Активация жирных кислот. Подобно первой стадии гликолиза сахаров перед b-окислением жирные кислоты подвергаются активации. Эта реакция протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима А (НS-КоА) и ионов Mg 2+ . Реакция катализируется ацил-КоА-синтетазой:

В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

Транспорт жирных кислот внутрь митохондрий. Коэнзимная форма жирной кислоты, в равной мере как и свободные жирные кислоты, не обладает способностью проникать внутрь митохондрий, где, собственно, и протекает их окисление, переносчиком активированных жирных кислот через внутреннюю митохондриальную мембрану служит карнитин (g-триметиламино-b-оксибути-рат):

После прохождения ацилкарнитина через мембрану митохондрий происходит обратная реакция – расщепления ацилкарнитина при участии НS-КоА и митохондриальной карнитин-ацилтрансферазы:

Ацил-КоА в митохондрии подвергается процессу b-окисления.

Этот путь окисления связан с присоединением атома кислорода к углеродному атому жирной кислоты, находящемуся в b-положении:

При b-окислении происходит последовательное отщепление от карбоксильного конца углеродной цепи жирной кислоты двууглеродных фрагментов в форме ацетила-КоА и соответствующее укорачивание цепи жирной кислоты:

В матриксе митохондрии ацил-КоА распадается в результате повторяющейся последовательности четырех реакций (рис.8).

1) окисление с участием ацил-КоА-дегидрогеназы (ФАД-зависимой дегидрогеназы);

2) гидратация, катализируемой еноил-КоА-гидратазой;

3) второго окисления под действием 3-гидроксиацетил-КоА-дегидрогеназы (НАД-зависимой дегидрогеназы);

4) тиолиза с участием ацетил-КоА-ацилтрансферазы.

Совокупность этих четырех последовательностей реакций составляет один оборот b-окисления жирной кислоты (см. рис. 8).

Образовавшийся ацетил-КоА подвергается окислению в цикле Кребса, а ацетил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь b-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), на последнем этапе b-окисления распадается на две молекулы ацетил-КоА.

При окислении жирной кислоты, содержащей n углеродных атомов, происходит n/2-1 цикл b-окисления (т.е. на один цикл меньше, чем n/2, так как при окислении бутирил-КоА сразу происходит образование двух молекул ацетил-КоА) и всего получится n/2 молекул ацетил-КоА.


Например при окислении пальмитиновой кислоты (С 16) повторяется 16/2-1=7 циклов b-окисления и образуется 16/2=8 молекул ацетил-КоА.

Рисунок 8 – Схема b-окисления жирной кислоты

Баланс энергии. При каждом цикле b-окисления образуется одна молекула ФАДН 2 (см. рис. 8; реакция 1) и одна молекула НАДН+Н + (реакция 3). Последняя в процессе окисления дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН 2 – 2 молекулы АТФ и НАДН+Н + – 3 молекулы АТФ, т.е. в сумме за один цикл образуется 5 молекул АТФ. При окислении пальмитиновой кислоты образуется 5*7=35 молекул АТФ. В процессе b-окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых, «сгорая» в цикле Кребса, дает 12 молекул АТФ, а 8 молекул дадут 12*8=96 молекул АТФ.

Таким образом, всего при полном b-окислении пальмитиновой кислоты образуется 35+96=131 молекула АТФ. С учетом одной молекулы АТФ, потраченной в самом начале на стадии активации жирной кислоты, общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты составит 131-1=130 молекул АТФ.

Однако, образовавшийся в результате b-окисления жирных кислот ацетил-КоА, может не только окисляться до СО 2 , Н 2 О, АТФ, вступая в цикл Кребса, но использоваться на синтез холестерина, а также углеводов в глиоксилатном цикле.

Глиоксилатный путь специфичен только для растений и бактерий, у животных организмов он отсутствует. Данный процесс синтеза углеводов из жиров подробно описан в методическом указании «Взаимосвязь процессов обмена углеводов, жиров и белков» (см. п. 2.1.1, с. 26).



error: Контент защищен !!